49 research outputs found

    Kinetic modeling and graphical analysis of 18F-fluoromethylcholine (FCho), 18F-fluoroethyltyrosine (FET) and 18F-fluorodeoxyglucose (FDG) PET for the discrimination between high-grade glioma and radiation necrosis in rats

    Get PDF
    Background : Discrimination between glioblastoma (GB) and radiation necrosis (RN) post-irradiation remains challenging but has a large impact on further treatment and prognosis. In this study, the uptake mechanisms of 18F-fluorodeoxyglucose (18F-FDG), 18F-fluoroethyltyrosine (18F-FET) and 18F-fluoromethylcholine (18F-FCho) positron emission tomography (PET) tracers were investigated in a F98 GB and RN rat model applying kinetic modeling (KM) and graphical analysis (GA) to clarify our previous results. Methods : Dynamic 18F-FDG (GB n = 6 and RN n = 5), 18F-FET (GB n = 5 and RN n = 5) and 18F-FCho PET (GB n = 5 and RN n = 5) were acquired with continuous arterial blood sampling. Arterial input function (AIF) corrections, KM and GA were performed. Results : The influx rate (Ki) of 18F-FDG uptake described by a 2-compartmental model (CM) or using Patlak GA, showed more trapping (k(3)) in GB (0.07 min(-1)) compared to RN (0.04 min(-1)) (p = 0.017). K-1 of 18F-FET was significantly higher in GB (0.06 ml/ccm/min) compared to RN (0.02 ml/ccm/min), quantified using a 1-CM and Logan GA (p = 0.036). 18F-FCho was rapidly oxidized complicating data interpretation. Using a 1-CM and Logan GA no clear differences were found to discriminate GB from RN. Conclusions : Based on our results we concluded that using KM and GA both 18F-FDG and 18F-FET were able to discriminate GB from RN. Using a 2-CM model more trapping of 18F-FDG was found in GB compared to RN. Secondly, the influx of 18F-FET was higher in GB compared to RN using a 1-CM model. Important correlations were found between SUV and kinetic or graphical measures for 18F-FDG and 18F-FET. 18F-FCho PET did not allow discrimination between GB and RN

    A perspective on the radiopharmaceutical requirements for imaging and therapy of glioblastoma

    Get PDF
    Despite numerous clinical trials and pre-clinical developments, the treatment of glioblastoma (GB) remains a challenge. The current survival rate of GB averages one year, even with an optimal standard of care. However, the future promises efficient patient-tailored treatments, including targeted radionuclide therapy (TRT). Advances in radiopharmaceutical development have unlocked the possibility to assess disease at the molecular level allowing individual diagnosis. This leads to the possibility of choosing a tailored, targeted approach for therapeutic modalities. Therapeutic modalities based on radiopharmaceuticals are an exciting development with great potential to promote a personalised approach to medicine. However, an effective targeted radionuclide therapy (TRT) for the treatment of GB entails caveats and requisites. This review provides an overview of existing nuclear imaging and TRT strategies for GB. A critical discussion of the optimal characteristics for new GB targeting therapeutic radiopharmaceuticals and clinical indications are provided. Considerations for target selection are discussed, i.e. specific presence of the target, expression level and pharmacological access to the target, with particular attention to blood-brain barrier crossing. An overview of the most promising radionuclides is given along with a validation of the relevant radiopharmaceuticals and theranostic agents (based on small molecules, peptides and monoclonal antibodies). Moreover, toxicity issues and safety pharmacology aspects will be presented, both in general and for the brain in particular.http://www.thno.orgdm2022Nuclear Medicin

    Technical feasibility of [18F]FET and [18F]FAZA PET guided radiotherapy in a F98 glioblastoma rat model

    Get PDF
    Background: Glioblastoma (GB) is the most common primary malignant brain tumor. Standard medical treatment consists of a maximal safe surgical resection, subsequently radiation therapy (RT) and chemotherapy with temozolomide (TMZ). An accurate definition of the tumor volume is of utmost importance for guiding RT. In this project we investigated the feasibility and treatment response of subvolume boosting to a PET-defined tumor part. Method: F98 GB cells inoculated in the rat brain were imaged using T2- and contrast-enhanced T1-weighted (T1w) MRI. A dose of 20 Gy (5 x 5 mm(2)) was delivered to the target volume delineated based on T1w MRI for three treatment groups. Two of those treatment groups received an additional radiation boost of 5 Gy (1 x 1 mm(2)) delivered to the region either with maximum [F-18]FET or [F-18]FAZA PET tracer uptake, respectively. All therapy groups received intraperitoneal (IP) injections of TMZ. Finally, a control group received no RT and only control IP injections. The average, minimum and maximum dose, as well as the D-90-, D-50- and D-2- values were calculated for nine rats using both RT plans. To evaluate response to therapy, follow-up tumor volumes were delineated based on T1w MRI. Results: When comparing the dose volume histograms, a significant difference was found exclusively between the D-2-values. A significant difference in tumor growth was only found between active therapy and sham therapy respectively, while no significant differences were found when comparing the three treatment groups. Conclusion: In this study we showed the feasibility of PET guided subvolume boosting of F98 glioblastoma in rats. No evidence was found for a beneficial effect regarding tumor response. However, improvements for dose targeting in rodents and studies investigating new targeted drugs for GB treatment are mandatory

    The Path Toward PET-Guided Radiation Therapy for Glioblastoma in Laboratory Animals: A Mini Review

    Get PDF
    Glioblastoma is the most aggressive and malignant primary brain tumor in adults. Despite the current state-of-the-art treatment, which consists of maximal surgical resection followed by radiation therapy, concomitant, and adjuvant chemotherapy, progression remains rapid due to aggressive tumor characteristics. Several new therapeutic targets have been investigated using chemotherapeutics and targeted molecular drugs, however, the intrinsic resistance to induced cell death of brain cells impede the effectiveness of systemic therapies. Also, the unique immune environment of the central nervous system imposes challenges for immune-based therapeutics. Therefore, it is important to consider other approaches to treat these tumors. There is a well-known dose-response relationship for glioblastoma with increased survival with increasing doses, but this effect seems to cap around 60 Gy, due to increased toxicity to the normal brain. Currently, radiation treatment planning of glioblastoma patients relies on CT and MRI that does not visualize the heterogeneous nature of the tumor, and consequently, a homogenous dose is delivered to the entire tumor. Metabolic imaging, such as positron-emission tomography, allows to visualize the heterogeneous tumor environment. Using these metabolic imaging techniques, an approach called dose painting can be used to deliver a higher dose to the tumor regions with high malignancy and/or radiation resistance. Preclinical studies are required for evaluating the benefits of novel radiation treatment strategies, such as PET-based dose painting. The aim of this review is to give a brief overview of promising PET tracers that can be evaluated in laboratory animals to bridge the gap between PET-based dose painting in glioblastoma patients

    New fluoroethyl phenylalanine analogues as potential LAT1-targeting PET tracers for glioblastoma

    Get PDF
    Abstract The use of O-(2-[18F]fluoroethyl)-l-tyrosine ([18F]FET) as a positron emission tomography (PET) tracer for brain tumor imaging might have some limitations because of the relatively low affinity for the L-type amino acid transporter 1 (LAT1). To assess the stereospecificity and evaluate the influence of aromatic ring modification of phenylalanine LAT1 targeting tracers, six different fluoroalkylated phenylalanine analogues were synthesized. After in vitro Ki determination, the most promising compound, 2-[18F]-2-fluoroethyl-l-phenylalanine (2-[18F]FELP), was selected for further evaluation and in vitro comparison with [18F]FET. Subsequently, 2-[18F]FELP was assessed in vivo and compared with [18F]FET and [18F]FDG in a F98 glioblastoma rat model. 2-[18F]FELP showed improved in vitro characteristics over [18F]FET, especially when the affinity and specificity for system L is concerned. Based on our results, 2-[18F]FELP is a promising new PET tracer for brain tumor imaging
    corecore